

SEXUAL REPRODUCTION IN FLOWERING PLANTS

- All flowering plants (angiosperms) show sexual reproduction.
- Flowers are the sites of sexual reproduction.

- Several hormonal and structural changes result in differentiation and development of the floral primordium.
- Inflorescences bear the floral buds and then the flowers.

STRUCTURE OF A FLOWER

A typical flower has 2 parts:

Androecium

Gynoecium

benkeftelegy.com

STRUCTURE OF A FLOWER

1. Androecium

- It is the male reproductive part of the flower.
- It consists of a whorl of stamens. Their number and length are variable in different species.

STRUCTURE OF A FLOWER

1. Androecium

Parts of a stamen

Filament

Anther

STRUCTURE OF A FLOWER

1. Androecium

- Filament is long and slender stalk.
- Its proximal end is attached to the thalamus or the petal of flower.

STRUCTURE OF A FLOWER

1. Androecium

- Terminal and typically bilobed. Each lobe has 2 thecae (dithecous).
- Often a longitudinal groove runs lengthwise separating the thecallin

STRUCTURE OF A FLOWER

1. Androecium

Transverse section of Anther

- The anther is a tetragonal structure consisting of four microsporangia located at the corners (2 in each lobe).
- The microsporangia develop to pollen sacs. They extend longitudinally all through the length of an anther and are packed with pollen grains.

STRUCTURE OF A FLOWER

1. Androecium

Structure of Microsporangium

- A typical microsporangium is near circular in outline.
- It is surrounded by 4 wall layers:
 - Epidermis
 - Endothecium
 - Middle layers
 - Tapetum
- The outer 3 layers give protection and help in dehiscence of anther to release the pollen.

STRUCTURE OF A FLOWER

1. Androecium

Structure of Microsporangium

- The tapetum (innermost layer) nourishes the developing pollen grains.
- Cells of the tapetum contain dense cytoplasm and generally have more than one nucleus.
- In young anther, each microsporangium has sporogenous tissue at centre. It consists of compactly arranged homogenous diploid cells (sporogenous cells).

STRUCTURE OF A FLOWER

1. Androecium

Microsporogenesis

- As the anther develops, each sporogenous cell (microspore or pollen mother cell) undergoes meiotic divisions to form microspore tetrads (microspores arranged in a cluster of four cells).
- The formation of microspores from a pollen mother cell (PMC) through meiosis is called microsporogenesis.

STRUCTURE OF A FLOWER

1. Androecium

Microsporogenesis

bankofbiology.com

- As the anthers mature and dehydrate, the microspores dissociate from each other and develop into pollen grains.
- Each microsporangium contains thousands of pollen grains. They are released with the dehiscence of anther.

STRUCTURE OF A FLOWER

1. Androecium

Scanning electron micrographs of pollen grains

Pollen grain (male gametophyte)

- Generally spherical.
- 25-50 mm in diameter.
- Cytoplasm is surrounded by a plasma membrane.
- A pollen grain has a two-layered wall: exine and intine.

STRUCTURE OF A FLOWER

1. Androecium

Scanning electron micrographs of pollen grains

Pollen grain (male gametophyte)

Exine

- The hard outer layer made up of sporopollenin (highly resistant organic material). It can withstand high temperature and strong acids and alkali. Enzymes cannot degrade sporopollenin.
- Exine has apertures called germ pores where sporopollenin is absent.
- Pollen grains are preserved as fossils due to the presence of sporopollenin.
- Exine exhibits patterns and designs.

STRUCTURE OF A FLOWER

1. Androecium

Pollen grain (male gametophyte)

Intine

- The inner wall.
- It is a thin and continuous layer made up of cellulose and pectin.

STRUCTURE OF A FLOWER

Scanning electron micrographs of pollen grains

A pollen grain

1. Androecium

Pollen grain (male gametophyte)

bankofbiology.com

A matured pollen grain contains 2 cells:

- Vegetative cell: It is bigger, has abundant food reserve and a large irregularly shaped nucleus.
- Generative cell: It is small and floats in the cytoplasm of the vegetative cell. It is spindle shaped with dense cytoplasm and a nucleus.

STRUCTURE OF A FLOWER

1. Androecium

Scanning electron micrographs of pollen grains

Pollen grain (male gametophyte)

- Over 60% angiosperms shed their pollen grains at 2-celled stage.
- In others, generative cell divides mitotically to give 2 male gametes. Thus pollen grains are shed at 3celled stage.

benkefbiology.com

STRUCTURE OF A FLOWER

1. Androecium

Pollen grain (male gametophyte)

- The shed pollen grains have to land on the stigma before they lose viability.
- The viability period of pollen grains is variable. It depends on temperature and humidity.
- Viability of pollen grains of some cereals (rice, wheat etc.) is 30 minutes. Some members of Leguminoseae, Rosaceae & Solanaceae have viability for months.

STRUCTURE OF A FLOWER

Economic importance of pollen grains

- These are rich in nutrients. Pollen tablets are used as food supplements. Pollen tablets & syrups increase performance of athletes and race horses.
- They are stored for years in liquid nitrogen (-196°C). They are used as pollen banks in crop breeding programmes.
- Pollen grains of some plants (e.g. Parthenium or carrot grass) are allergic for some people. It leads to chronic respiratory disorders – asthma, bronchitis, etc.

STRUCTURE OF A FLOWER

- A. Hibiscus pistil.
- B. Multicarpellary, syncarpous pistil of Papaver.
- C. Multicarpellary, apocarpous gynoecium of Michelia

2. Gynoecium

- Female reproductive part.
- It may have a single pistil (monocarpellary) or more than one pistil (multicarpellary).
- In multicarpellary, the pistils may be fused together (syncarpous) or free (apocarpous)

STRUCTURE OF A FLOWER

Stigma Petal Style Pollen Tube Anther Filament Ovary Ovule Sepal Receptacle Leaf -Style

2. Gynoecium

Each pistil has three parts:

- Stigma: Landing platform for pollen grains.
- Style: Elongated slender part beneath the stigma.
- Ovary: Basal bulged part.

STRUCTURE OF A FLOWER

2. Gynoecium

bankofbiology.com

- Inside the ovary is the ovarian cavity (locule) in which placenta is located.
- Arising from the placenta are the ovules (megasporangia).
- The number of ovules in an ovary may be one (wheat, paddy, mango etc.) to many (papaya, water melon, orchids etc.).

STRUCTURE OF A FLOWER

2. Gynoecium

Structure of Megasporangium (Ovule)

- Ovule is attached to the placenta by a stalk (funicle).
- Junction between the body of ovule and funicle is called hilum.
- Each ovule has 1 or 2 protective envelopes (integuments) except at the tip where a small opening (micropyle) is present.
- Opposite the micropylar end is the chalaza (basal part).

STRUCTURE OF A FLOWER

2. Gynoecium

Structure of Megasporangium (Ovule)

- Enclosed within the integuments, there is a mass of cells called nucellus. Its cells contain reserve food materials.
- Inside the nucellus is the embryo sac (female gametophyte).
- An ovule generally has a single embryo sac formed from a megaspore.

STRUCTURE OF A FLOWER

2. Gynoecium

Megasporogenesis

- It is the formation of megaspores from megaspore mother cell (MMC).
- Ovules generally differentiate a single MMC in the micropylar region of the nucellus.
- It is a large cell containing dense cytoplasm and a prominent nucleus.
- MMC undergoes meiosis to produce 4 megaspores.

STRUCTURE OF A FLOWER

2. Gynoecium

Formation of Female gametophyte (embryo sac)

- In majority of flowering plants, one megaspore is functional while the other three degenerate.
- The functional megaspore develops into the female gametophyte.
- The embryo sac formation from a single megaspore is called monosporic development.

STRUCTURE OF A FLOWER

2. Gynoecium

Formation of Female gametophyte (embryo sac)

- The nucleus of functional megaspore divides mitotically to form 2 nuclei. They move to opposite poles, forming 2nucleate embryo sac.
- The nuclei again divide two times forming 4-nucleate and 8-nucleate stages of the embryo sac.
- These divisions are free nuclear, i.e. nuclear divisions are not followed immediately by cell wall formation.

STRUCTURE OF A FLOWER

2. Gynoecium

Formation of Female gametophyte (embryo sac)

- After the 8-nucleate stage, cell walls are laid down leading to the organization of the typical female gametophyte.
- 6 of the 8 nuclei are surrounded by cell walls and organized into cells. Remaining 2 nuclei (polar nuclei) are situated below the egg apparatus in the large central cell.

STRUCTURE OF A FLOWER

2. Gynoecium

Distribution of cells in the embryo sac

- A typical mature embryo sac is 8-nucleate and 7-celled.
- 3 cells are grouped at the micropylar end and form egg apparatus. It consists of 2 synergids and one egg cell.
- Synergids have special cellular thickenings at the micropylar tip called filiform apparatus. It helps to guide the pollen tubes into the synergid.
- 3 cells at the chalazal end are called the antipodals.
- The large central cell has two polar nuclei.

STRUCTURE OF A FLOWER

2. Gynoecium

Formation of Female gametophyte (embryo sac): Overall

